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A method of  short-duration measurements  was used in the stage of  irregular thermal regime to evaluate the 

effect o f  contact resistance on measurements  of  the thermal conductivity of  solids. 

The contemporary level of heat technology imposes serious demands on methods of measuring thermal 

properties as regards their rapidity and the accuracy of the obtained experimental data. In this connection, in recent 

years an unsteady-state short-duration research method has been actively developed that uses the initial (irregular) 

stage of heat exchange between the sensor and the material of the sample. Short periods of measurements induce 

diffusion of the temperature field into the studied material. This diffusion is much shorter than the mean free path 

of photons and allows obtaining experimental data that practically are not distorted by the radiant component of 

the heat transfer. The probe in the form of a thin filament is located on the interface between the specimen and 

an elastically deformable material (substrate) that improves the thermal contact when pressed to the surface of the 

specimen. The probe is a source of thermal power when heated by short rectangular current pulses and allows 

determination of the temperature of the specimen by measuring its resistance. The measurements are taken in an 

atmosphere of inert gas. The experimental procedure, the experimental setup, and the scheme of measurement are 

given in [I-3]. 
The idealized model of the method considers a source with an infinitesimal radius and an intrinsic heat 

capacity. The source is located at the interface between the studied and elastically deformed media. A solution of 

the model problem is the known logarithmic relation [4 ] 

qL (t2) 
AT (r 0, t2) - AT (r0, tl) - 2,,r (~1 + 22) In ~-l " (1) 

We consider the actual location of the sensor filament relative to the studied material (Fig. 1). The filament 

is shifted toward the elastically deformable material by the magnitude of the radius. The filament is in contact 

simultaneously with three materials, namely, the elastically deformable material, the solid material, and the inert 

gas. The area of contact with the elastically deformable material is the largest. The goal of the present work is to 

study the effect of these factors, which are a consequence of the asymmetric location of the filament, on heat transfer 

between the filament and the materials as concerns deviation of the temperature increment from the idealized 

logarithmic relation (1). In summary, these factors can be represented in terms of the contact resistance between 
the sensor and the studied material. The mathematical model that is closest to the actual experimental conditions 

is as follows (see Fig. 2a): the heat-conduction equation 

ciPi Ot - r Or r + r 2  002, r, O C Qi , i = 1 , 2 , 4 ,  
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Fig. 1. Location of the sensor filament relative to the studied material. 
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Fig. 2. Domains of definition of the equations of the initial two-dimensional 

problem (a) [1) Oo, 2) 02, 3) 01, 4) 03 ], of the longitudinal one-dimensional 
subproblem (b) [1) 0o, 2) 0(r), 3) 02, 4) 03, 5) 041, and of the radial one- 

dimensional subproblem (c) [1) 0 O, 2) O, 3) 02, 4) 01, 5) Oal. 

) 23 O2T 2 OT _ 23 O rOT + - - ~  + qL/~rro r, 0C0.3" 
c3P30t r Or ~ Or) r E 002 

boundary conditions of the fourth kind: 
a) between the studied material and the substrate and between the studied material and the inert gas: 

21-~n n-O io---~ln+ O, i = 2 , 4 ;  TIn_0=TIn+0; 

b) between the probe and the substrate, the probe and the inert gas, and the probe and the studied material: 

3t3-~rOT I r=r0_ 0 = 2i ~OT I r=ro+O , i = 1 ,  2 , 4 ;  Tlr=ro_ o =TIr=ro+O; 

c) the condition of constancy of the temperature at infinity: 

2 or] 
i -~-r]r_,n=O, i =  1 , 2 ;  

the initial condition 

T (r; 0; 0) = Tin. 

In these equations the subscript i is chosen from the condition of occurrence of Qi in the corresponding 
region (see Fig. 2a). This system of equations is to be solved by the method of fractional steps [5 ]. By fixing the 
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angle or the radius in the division grid, the solution of the two-dimensional problem is reduced to successive solution 

(alternation in the time lattice) of two one-dimensional subproblems: longitudinal one-dimensional and radial 

one -d imens iona l  ones. 
The  longi tudinal  o n e - d i m e n s i o n a l  problem (see  Fig. 2b). The heat-conduction equation 

OT ]t 1 O2T 
cl Pl  Ot r z O02 ' r° < r < R , 0 (r) < 0 < 04, 

OT 3t 2 02T 

c2 P2 r 2 002 , ro < r < R 
Ot 

{0 < O < O ( r )  0 0 4 < 0  < 2~} \ {02 < 0  ~ 03} ; 

OT 23 d2T 
c3 P3 - 

Ot r 2 002 

2 
- -  + ~ ,jaL/grr,, e < r < % ,  0 < 0 ~ ;  

OT ~t 4 O2T 
- -  r *  c4P4 dt r 2 0 0 2 '  rO < r <  , 0 2 ~ 0 < 0 ( 0 U 0 4 < 0 ~ 0 3 ;  

boundary conditions of the fourth kind: between the studied material and the substrate, the studied material and 

the inert gas, and the substrate and the inert gas: 

-- , r * < r < R ,  
"t2 r "-~ O(r)-O r " ~  O(r)+O 

r - - ~  O(r)-O r - -  O(r)+O' r° < r < r*,  

- - - -  = , r =  r*,  
r O(r)-O A2 r - ~  O(r)+O 

T lo(r)_ O =  T lO(r)+O, r O < r < R ;  

the initial condition 

T ( r , O , O ) =  Tin , e < r <  R ,  O < O < 2 ~ z .  

The  radial  o n e - d i m e n s i o n a l  prob lem ( see  Fig. 2c).  The heat-conduction equation 

where r(O) = r0/sin (0 - n - ~ o ) ;  

aT  2 2 0  (r  aTI  
c 2 P 2 o t  - r Or ~ -'~r ] , r o < r < r ( O ) ,  0 < 0 < 0 2 U 0 3  < 0 <  ~ ;  

c 3 P 3 0 t  - r Or r + q L / : r r o ,  e < r <  r O, 0 < 0 <  27r; 

c4P4 (It -- r Or r , ro < r < r (O) , 0 2 < 0 <  1.5:r+~oO 1.SJr + ~o < O <_ 03 ; 

boundary conditions of the fourth kind: 
a) between the studied material and the substrate, the studied material and the inert gas: 
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Fig. 3. Results of a calculation of the time dependence of the temperature  

i n c r e m e n t  of  t h e  f i l a m e n t  f o r  t h e  s y s t e m  of  p l a t i n u m - q u a r t z  

g l a s s - H P M Q - a r g o n  (r0 = 1-10 - s  m): a) for  Tin = 300 K, b) 1300 K; 1) 

logarithmic curve corresponding to the idealized mathematical  model,  2) 

calculated curve of the temperature  increment versus time, t 1 = 0.01 sec is the 

reference time. 

)t OT I A 10T I = , r > r  O, 0 0 < 0 < 0 2 0 0 3 < 0 < - 2 0 7 ;  
2-~r r=r(O)-O "~r r=r(O)+O 

. l  = , r > r  O, 0 2 < - 0 < 1 . 5 ~ + ~ o U 1 . 5 ~ + ~ 0 < 0 < 0 3 ;  
r=r(O)-O r = r ( O ) + O  

T[ r=r(0)-0 = T I r=r(0)+0, r > r0,  00 < 0 < 2x ; 

b) between the probe and the substrate,  the probe and the inert  gas, and the probe and the studied material:  

OT] = ~2 OT[ , 0 < 0 < 0 2 0 0 3 < 0 _ _ .  2/1:; 
aa-~r r=ro_ o ~ r=ro+O 

r--r0-0 r=r0+0 

I °TI ]t OT = 21--~- r , 0 =  1 . 5 ~ + ~ o ;  
3 ~ r=r0_0 r=r0+0 

T lr=ro_ o = T lr=ro+O, 0 < 0 <_% 2~ ; 

c) the condition of constancy of the temperature  at infinity: 

. l  r - . - -  o,  Oo , .  -- o ,  o .  o_<Oo; 

the initial condition 

Tin = T (r; 0; t) 

from the solution of the longitudinal problem, e < r < R, 0 < 0 < 2n. 

Numerical solution. Approximation of the differential equations of the one-dimensional  subproblems (for 

the radial one  over the radius and for the longitudinal one over the angle) at each inner  point of the division grid 

and of the boundary  conditions at the boundary  points gives a closed system of l inear algebraic equations.  Its 

solution is an approximate solution of the initial problem. A solution for the radial problem is sought  by the 

factorization method and that for the longitudinal problem, by the cyclic-factorizat ion method [6 ]. 
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Fig. 4. Deviation of the slope of the curve of the excess temperature of the 

sensor filament to the logarithmic time axis ~)  relative to the steady-state 
value ~*) (r0 -- 1-10 -5 m): 1, 1') for the system of p la t inum-quar tz  

g lass -HPMQ-argon  (300 and 1300 K, respectively), 2, 2') platinum-single 

crystal L i F - H P M Q - a r g o n  (300 and 1000 K), 3, 3') plat inum-organic 

g lass -HPMQ-argon  (300 and 380 K), 4) platinum-quartz glass-HPMQ 

-hel ium (300 K), 5) platinum-quartz glass-foam plastic-argon (300 K), 6, 

7) maximum effect of the intrinsic thermal conductivity of the sensor filament 

for systems 1-4 and 5, respectively (300 K). 

The angle 02 does not remain constant from one experiment to another and depends, in particular, on the 

force of pressing of the substrate to the surface of the specimen. Therefore, calculation was carried out in the whole 

range of this angle 220-240 ° (in view of the property of elastic deformability of the substrate). Later in this work 

we give results of a calculation for the most unfavorable case (02 = 02rain). 
From general considerations it is clear that the process of heating of the filament should be affected by the 

properties of the studied solid material, the elastically deformable material, the substance filling the space between 

the specimen, the substrate, and the probe, and the diameter of the probe. On the other hand, as is known from 

studies of the thermal properties of liquids and gases [11, 12], for short heating times, the deviation of the 

temperature of the probe from the idealized model can largely be explained by the effect of the intrinsic heat 

capacity of the filament. Therefore, it is necessary to understand the role of the contact resistance in simultaneous 

action of these negative factors. 
The obtained time dependence of the temperature increment of the probe filament as applied to studies of 

the thermal conductivity of quartz glass KV at experimental temperatures of 300 and 1300 K [1 ] is shown in Fig. 

3a and b, respectively (curve 2). For these studies the probe was made of Extra platinum (the radius of the filament 

is 10/zm). Measurerements were taken in an argon atmosphere. A heatproof material based on ultrathin quartz 

filaments (HPMQ) (p = 120 kg/m 3, the diameter of the filament is < 1 ym) was used as the elastically deformable 

material. The character of the deviation of the excess temperature of the filament from the idealized logarithmic 

curve for Tin -- 300 K and 1300 K is shown in Fig. 4 (curves 1 and 1', respectively) in the form of the variation of 

the slope to the time axis relative to the steady-state value. It should be noted that a higher corresponding error 

is found at lower temperatures of the experiment. A similar calculation was conducted for substances with properties 

different from those of quartz glass: a single crystal of LiF (21/22 - 10) for Tin - 300 and 1000 K (Fig. 4, curves 

2 and 2') and organic glass (21/22 -0 .1)  for Tin = 300 and 380 K (Fig. 4, curves 3 and 3'). Next, the properties 

of the gas filling the space between the probe, the substrate, and the specimen (a case with helium was studied, 
curve 4) and the properties of the elastically deformable material (artificial asbestos amphibole, the curve almost 

coincides with curve 1, and foam plastic, curve 5) were varied. The data on the thermal conductivity of quartz glass 
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Fig. 5. Results of a s tudy of the curve of contact resistance versus the radius 

of the probe filament for the system of p l a t inum-qua r t z  g l a s s - H P M Q - a r g o n  

(Tin -- 300 K): 1) r0 = 0.25- 10 -5  m, 2) 0.5- 10 -5,  3) 1.0.10 -5. 

and LiF correspond to those of [1 ] and [2 ], and the data on the heat capacity and densi ty,  to those of [7 ]. The  

thermal  properties of HPMQ were chosen in accordance with [8 ], and those of the other  compounds,  with [9 ]. 

Use of liquids as an intermediate  filling material seems unsuitable for two reasons. First, it can penetra te  

into pores and microroughnesses of the specimen and the substrate  and change their  thermal  properties.  Second, 

the temperature  range of the experiment  becomes substantially narrower with them. 

The  dashed lines in Fig. 4 show the errors caused by the intrinsic heat capacity of the fi lament (the 

evaluation was done in accordance with [10 ] with the assumption that the entire space surrounding the probe is 

filled with the elastically deformable material).  

Figure 5 shows results of a s tudy of the dependence of the distorting effect of the contact resis tance on the 

experimental  process on the radius of the probe filament for the system of p l a t i n u m -q u a r t z  g l a s s - H P M Q - a r g o n .  

Thus ,  when the hot-wire method and its variants (in particular, the method of i rregular  thermal  regime) 

are used to s tudy the thermal conductivity of solids, the durat ion of a measuring pulse is limited from below by 

the negative effect of the shift of the probe toward the pressing material on the accurracy of the measurements .  As 

was shown by calculations for a wide class of materials (21 - 0 . 1 - 1 5  W / ( m - K ) ) ,  the t ime in which the  heat ing 

thermogram attains the idealized logarithmic dependence (r °) with an accuracy of 1% is equal to - 0 . 2 - 0 . 3  sec for 

a radius of the fi lament of 2.5 gm,  0 . 3 - 0 . 4 5  sec for a 5-/~m radius, and 0 . 8 - 1 . 3  sec for a 10-/~m radius (its should 

be noted that shor ter  times correspond to smaller ratios ; t l /22) .  This,  in turn,  almost precludes obtaining reliable 

experimental  data  for specimens with a thickness less than (at*)1/2. Apart from the aforesaid,  in practice a t tent ion 

should be paid to the quality of the surfaces in contact with the probe to eliminate a possible effect of their  roughness  

on the process. 

N O T A T I O N  

T, temperature,  K; AT, excess temperature  of the probe; Tin, initial temperature;  t, time, sec; tl, t2, 

moments  of measurement ,  t2 > tl; r*, time in which the calculated temperature  of the probe at tains the  idealized 

logarithmic curve with a specified error; r, 0, longitudinal and radial coordinates,  m, rad; r 0, radius of the probe; 

R, distance exceeding the length of diffusion of the temperature  field in the process of heating of the probe 

( -  5 .10  -3 m) ; 7", Oi, i = I - 4 ,  character is t ic  angles: 7" =- arcs in  ( r o / R ) ,  00 -- or + 27", 01 = 1.5Jr + 7", 02 = 

(1.2222-1.3333)3r + 7", 0 2 r a i n  = 1.22227r + 7", 03 -- 2~ - (02 - 00), 04 = 2:r - 0(r) + 00; r*, r(O), character is t ic  

distances: r* = r0/s in  (02 - 3r - 7"), r(O) = r o / s i n  (0 - :r - 7'); e << r o, small quantity; n, direction of the normal 

to the interface between the studied and elastically deformable materials; Qi, i = 1 - 4 ,  domains of definit ion of the 
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heat conduction equations for the studied material, the substrate, the probe, and the filling gas, respectively; ,~i 
(W/(m-K)),  ci (J/(kg-K)),  Pi (kg/m3), i = 1-4,  thermal conductivity, specific isobaric heat capacity, and density 
of the studied material, the substrate, the probe, and the filling gas, respectively; a, thermal diffusivity, m2/sec; 
qL, thermal power released in a unit of the length L of the probe, W/re. 
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